

y protección contra rayos

ACS - Acero Recubierto de Cobre

¿Qué es el CopperClad?

- Es un producto bimetálico utilizado en la industria del cable, que combina la alta resistencia del acero con la conductividad y resistencia a la corrosión del cobre para el cable de CCS Acero-Cobre. Y para el CCA Aluminio-Cobre, combina el ligero peso, flexibilidad y conductividad del aluminio con la resistencia a la corrosión y alta conductividad del cobre.
- Un bimetal, es un sustituto de un metal simple
- El metal externo es diferente del metal interno
- La adhesión de ambos metales es a través de un proceso metalúrgico nombrado "Cladding"
- CopperClad S.A. de C.V. tiene la más alta tecnología jamás desarrollada en el mundo para el proceso de "Cladding". Con instalaciones con tecnología de punta y toda la maquinaria nueva, garantizamos la más alta calidad y servicio para todos nuestros clientes.

Productos CopperClad

- 1. CCS CopperClad (Acero-Cobre)
 - 21%, 30% y 40% de IACS.

CCS (Acero-Cobre)

- El CCS tiene más de 10 veces los ciclos de fatiga flexible comparado con el cobre sólido recocido.
- El CCS es 65% más resistente que el cobre recocido.
- El CCS es más robusto que el cobre recocido.
- El CCS tiene un mayor rapidez en el impedimento a tierra que el cobre, así que las líneas y equipo tienen mejor protección.
- El CCS tiene mayor resistencia a las fallas de expansión térmica cuando se compara con el cobre sólido.
- El CCS tiene la misma resistencia a la corrosión que el cobre.
- Las principales aplicaciones para CCS son los cables CATV, cables telefónicos, aplicaciones a sistemas de tierra y cables aéreos.

Aplicaciones de CopperClad

Los productos CopperClad son la solución perfecta para sustituir al cobre en extensas industrias.

Con la volatilidad del precio del cobre en el Mercado, todos los usuarios están en busca de productos alternativos, y todos hemos llegado a la conclusión de que los productos bimetales de CopperClad son la mejor opción.

Si usted busca detener el robo de su cobre, tener menos peso en sus conductores, agregar fuerza en sus cables y ahorrar dinero en sus costos, CopperClad tiene un producto perfecto y de alta calidad que bien podrá ser utilizado para reemplazar al cobre en sus aplicaciones actuales.

Industria Electrica

La protección del valioso equipo y del personal es necesario cuando existen descargas eléctricas de relámpagos que pueden ser realmente terribles y podrían causar un alto costo en la compañía y en el servicio a sus clientes. Así que para prevenir estas situaciones, el sistema de tierra es necesario para dirigir el relámpago al suelo.

¿Por qué no roban el Acero-Cobre CopperClad?

- Es imposible separar el cobre del acero debido a su proceso metalúrgico.
- Es más fuerte y duro de cortar que el cobre sólido
- Tiene \$0 de valor como chatarra.

¿Por qué usar el CCS CopperClad en los Sistemas de Tierra?

- Es menos costoso que el cobre sólido
- Reemplaza al cobre desnudo directamente, pues realiza la misma función
- Tiene la fuerza de

CCS para aplicaciones a tierra

Productos:

- Alambre y Cables de 3, 7 y 19 alambres.
 - CCS en 30% y 40% de IACS.
 - Recocido o Suave
 - -Acero de bajo carbono (LC), alta resistencia (HS) y extra alta resistencia (EHS).
- Todos los sistemas eléctricos requieren del sistema de tierra para la seguridad y protección del equipo y del personal.
- Esto aplica a las líneas de transmisión, de distribución, subestación e instalación industrial.

El cable de cobre es un objetivo perfecto para ladrones, esto causa gran pérdida de capital, inversión y apagones en los sistemas.

Tabla de substitución directa de CCS por cobre sólido

Conductor Sólido Cobre	40% CCS	30% CCS
# 8	# 8	N/A
# 6	# 6	# 6
# 4	# 4	# 4
# 2	7 # 9	7 # 9
# 1	7 # 8	7 # 7
1/0	7 # 7	7 # 6
2/0	7 # 6	7 # 5
3/0	7 # 5	19 # 9
4/0	19 x 0.1055"	N/A
4/0	19 # 9	19 # 8
250 MCM	19 # 8	19 # 7
300 MCM	19 # <i>7</i>	19 # 6
400 MCM	19 # 6	19 # 5
500 MCM	19 # 5	19 # 4

Características Técnicas de CCS

Conductor	Diámetro Nominal		30% Conductividad				Peso por Longitud		Sección Transversal	
Medida AWG	Pulgadas	mm	Ohms/1000 ft	Ohms/KM	FA Corriente en t=0.5sec (Amps)	Ampacidad aprox. A 60 Hertz	1,000 ft	Kg/Km	Cir. Mils	mm ²
					Alambre					
No. 4	0,204	5,19	0.8447	2.7715	6,211	120	115,8	172,3	41.740	21,15
No. 6	0,162	4,11	1.3430	4.4064	3,845 able de 7 Hilo	90 s	72,9	108,4	26.250	13,30
7 No. 4	0,613	15,57	0.1219	0.4000	36,823	410	818,9	1.218,6	292.200	148,04
7 No. 5	0,546	13,87	0.1537	0.5043	34,309	360	649,4	966,4	231.700	117,42
7 No. 6	0,486	12,34	0.1938	0.6359	27,211	310	515,0	766,4	183.800	93,10
7 No. 7	0,433	11,00	0.2444	0.8019	21,591	270	408,4	607,8	145.700	73,87
7 No. 8	0,385	9,78	0.3018	0.9902	19,273	230	323,9	482,0	115.600	68,65
7 No. 9	0,343	8,71	0.3886	1.2750	13,605	200	256,9	382,3	91.650	46,44
7 No. 10	0,306	7,77	0.4900	1.6077	10,796	170	203,7	303,1	72.680	36,83
				Cable de 19 Hilos						
19 No 5	0,910	23,11	0.05685	0.18652	93,020	620	1.700,0	2.529,7	628.900	318,71
19 No. 6	0,810	20,57	0.07168	0.23518	73,795	540	1.403,0	2.087,7	498.800	252,71
19 No. 7	0,721	18,31	0.09039	0.29657	58,563	470	1.113,0	1.656,2	395.500	200,45
19 No. 8	0,642	16,31	0.11400	0.37403	46,436	410	882,7	1.313,5	313.700	158,97
19 No. 9	0,572	14,53	0.14370	0.47148	43,182	360	700,0	1.041,6	248.800	126,06

Conductor	Diámetro Nominal		40% Conductividad				Peso por Longitud		Sección Transversal	
Medida AWG	Pulgadas	mm	Ohms/1000 ft	Ohms/KM	FA Corriente en t=0.5sec (Amps)	Ampacidad aprox. A 60 Hertz	1,000 ft	Kg/Km	Cir. Mils	mm ²
					Alambre					
No. 4	0,204	5,19	0.6337	2.0792	6,978	140	115,8	172,3	41.740	21,15
No. 6	0,162	4,11	1.0080	3.3072	4.320 e de 7 Hilos	100	72,9	108,4	26.250	13,30
7 No. 4	0,613	15,57	0.0914	0,3000	41,369	470	818,9	1.218,6	292.200	148,04
7 No. 5	0,546	13,87	0.1153	0,3783	38,545	410	649,4	966,4	231.700	117,42
7 No. 6	0,486	12,34	0.1454	0,4771	30,570	350	515,0	766,4	183.800	93,10
7 No. 7	0,433	11,00	0.1833	0,6014	24,257	310	408,4	607,8	145.700	73,87
7 No. 8	0,385	9,78	0.2312	0,7586	17,155	270	323,9	482,0	115.600	68,65
7 No. 9	0,343	8,71	0.2915	0.9564	15,285	230	256,9	382,3	91.650	46,44
7 No. 10	0,306	7,77	0.3676	1,2061	12,128	200	203,7	303,1	72.680	36,83
				Cable	de 19 Hilos					
19 No 5	0,910	23,11	0.04264	0,13990	104,504	690	1.700,0	2.529,7	628.900	318,71
19 No. 6	0,810	20,57	0.05377	0,17642	82,905	610	1.403,0	2.087,7	498.800	252,71
19 No. 7	0,721	18,31	0.06780	0,22245	65,792	530	1.113,0	1.656,2	395.500	200,45
19 No. 8	0,642	16,31	0.08550	0,28053	52,169	470	882,7	1.313,5	313.700	158,97
19 No. 9	0,572	14,53	0.10780	0,35369	48,514	410	700,0	1.041,6	248.800	126,06

Tabla 1- Características dimensionales y electromecánicas del alambre y cables ACS, Correspondiente a 40% de conductividad, alta resistencia (Para redes de distribución aérea)

Descripción Corta	Sección Transversal (mm²)	Diámetro Nominal (mm)	Carga de Ruptura min (kN)	Resistencia CD A 20° C (Ω/Km)	Masa aprox (Kg/Km)	Espesor del recubrimiento de los alambres (mm)
Cable ACD 7 No.9	46,44	8,71 ± 1,5 %	38,32	0,956	378	0,15
Cable ACD 3 No.8	25,10	7,03 ± 1,5 %	21,04	1,766	206	0,17
Cable ACD 3 No.9	19,89	6,27 ± 1,5 %	17,54	2,220	163	0,15
Alambre ACD No. 4	21,15	5,19 ± 1,5 %	22,76	2,079	172	0.38

Tabla 2- Características dimensionales y electromecánicas de los cables de acero suave o recocido Con recubrimiento de cobre soldado (ACS), Correspondiente a 30% de Conductividad, (Para redes de distribución subterránea)

Descripción Corta	Sección Transversal (mm²)	Diámetro Nominal (mm)	Carga de Ruptura min (kN)	Resistencia CD A 20° C (Ω/Km)	Masa aprox (Kg/Km)	Espesor del recubrimiento de los alambres (mm)
Cable ACD 7 No.9	46,44	8,71 ± 1,5 %	38,32	0,956	378	0,15
Cable ACD 3 No.8	25,10	7,03 ± 1,5 %	21,04	1,766	206	0,17
Cable ACD 3 No.9	19,89	6,27 ± 1,5 %	17,54	2,220	163	0,15
Alambre ACD No. 4	21,15	5,19 ± 1,5 %	22,76	2,079	172	0.38

Especificaciones Internacionales del CCS

- ASTM B 227 Hard-Drawn Copper-Clad Steel Wire
- ASTM B 228 Concentric-Lay- Stranded Copper-Clad Steel Conductors
 - ASTM B 229 Concentric-Lay-Stranded Copper
- & Copper-Clad Steel

Composite Conductors

- ASTM B 452 Copper-Clad Wire for Electronic Application
 - ASTM B 910 Annealed Copper-Clad Steel Wire.
 - CFE- E0000-33
 - UL-854
 - UL-1581
- ASTM B566 -Standard Specification for Copper-Clad Aluminum Wire

Suc. Cancún López Portillo Manzana No. 21 lote 4, local 2, Región 94 Municipio Benito Juárez Cancún, Quintana Roo C.P. 77517 Tel. (998) 880-6500 cancun@amesa.com.mx

Soluciones eléctricas y protección contra rayos